5G Frame Structure and Frequency structure

Release 15 TS 38.211

Terminologies

- T_s : Sampling time
- μ : Numerology index
- BWP : Bandwidth part
- CRB : Common Resource block
- PRB : Physical Resource Block
- SCS : subcarrier spacing
- CP : cyclic prefix
- CBW : Carrier Bandwidth
- UE : User Equipment
- CC : component carriers
- SSB : Synchronization Signal Block
- FR1 : Frequency Range 1 (from 450MHz to 6000MHz)
- FR2 : Frequency Range 2 (from 24250MHz to 52600MHz)

- [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications"
- [2] 3GPP TS 38.201: "NR; Physical Layer General Description"
- [3] 3GPP TS 38.202: "NR; Services provided by the physical layer"
- [4] 3GPP TS 38.211: "NR; Physical channels and modulation"
- [5] 3GPP TS 38.212: "NR; Multiplexing and channel coding"
- [6] 3GPP TS 38.213: "NR; Physical layer procedures for control"
- [6] 3GPP TS 38.214: "NR; Physical layer procedures for data"
- [7] 3GPP TS 38.215: "NR; Physical layer measurements"

Document List

[Search on Google 15.8.0]

- [8-1] 3GPP TS 38.101-1: "NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone"
- [8-2] 3GPP TS 38.101-2: "NR; User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone"
- [8-3] 3GPP TS 38.101-3: "NR; User Equipment (UE) radio transmission and reception; Part 3: Range 1 and Range 2 Interworking operation with other radios"
- [9] 3GPP TS 38.104: "NR; Base Station (BS) radio transmission and reception"
- [10] 3GPP TS 38.133: "NR; Requirements for support of radio resource management"
- [11] 3GPP TS 38.321: "NR; Medium Access Control (MAC) protocol specification"
- [12] 3GPP TS 38.331: "NR; Radio Resource Control (RRC); Protocol specification"
- [13] 3GPP TS 36.213: "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures"

Copyright: IIT Madras, 2019

Layer 1

Copyright: IIT Madras, 2019

<u>Channels [Come from the MAC layer as transport blocks]</u> <u>Downlink</u>

- the Physical Downlink Shared Channel (PDSCH),
 - Used for data transmission
- the Physical Downlink Control Channel (PDCCH),
 - Used for downlink control information
- the Physical Broadcast Channel (PBCH),
 - Carries system information

<u>Uplink</u>

- the Physical Random Access Channel (PRACH),
 - Initial access
- the Physical Uplink Shared Channel (PUSCH),
 - Uplink data channel
- and the Physical Uplink Control Channel (PUCCH).
 - Uplink control channel

Signals [Generated in the Phy layer]

-Reference signals

- Primary and Secondary sync signals

Modulation Schemes and Coding

Downlink

- QPSK
- 16 QAM
- 64 QAM
- 256 QAM

Uplink [OFDM]

- QPSK
- 16 QAM
- 64 QAM
- 256 QAM

Uplink [DFT-s-OFDM]

- Pi/2 BPSK
- QPSK
- 16 QAM
- 64 QAM
- 256 QAM

Coding

- Data: LDPC
- Control: Polar coding

Physical layer procedures

Physical layer procedures

- Cell search
- Power control
- Uplink synchronisation and Uplink timing control
- Random access related procedures
- HARQ related procedures
- Beam management and CSI related procedures

Physical-layer model for DL-SCH transmission

Physical-layer model for BCH transmission

Frame Structure

Sampling Rates

- Basic unit of time is $T_c = 1/(\Delta f_{max} \cdot N_f)$ where $\Delta f_{max} = 480 \cdot 10^3$ Hz and $N_f = 4096$
 - Tc=1/(480e3 x 4096)
 - Corresponds to a BW (or a sampling rate) of 1.96608 GHz
 - Ts=1/(15e3 x 2048) (Sampling time of LTE corresponding to 30.72 MHz.)
 - K = Ts/Tc = 64
 - Lower BW corresponds to multiples of Tc.

logicalChannelSR-DelayTimer Sub-Carrier Spacing [Numperior number of subframes. Value sf20 corresponds to 20 subframes, sf40 nber of subframes. Value *sf1* corresponds to 1 subframe, value s

- Multiple Sub-Carrier spacings are allowed in the Rubframes. Value sf10 corresponds to 10 subframes, value
- LTE allowed only 15KHz SCS.
- To ensure that the timing synchronization holds at subframe boundaries, the SCS is designed to ensure that an integral multiple of slots in a higher SCS fits in the same time duration as a lower SCS slot.
- As the SCS increases, the duration of a symbol decreases according to $T_{II} = 1/\Delta f$

μ	Δf = 2 ^μ *15 _[kHz]	СР	Frequency
0	15	Normal	FR1
1	30	Normal	FR1
2	60	Normal / Extended	FR1/FR2
3	120	Normal	FR2
4	240	Normal	FR2

Frame Structure.

- Each frame is of duration $T_{\rm f} = (\Delta f_{\rm max} N_{\rm f} / 100) \cdot T_{\rm c} = 10 \, {\rm ms}$
- Frame is identified by SFN
- Each frame is divided into two half-frames
 - First half: 0 4 sub frames
 - Second half: 5 9 sub frames
- In a subframe slots are numbered as $n_s^{\mu} \in \{0, ..., N_{\text{slot}}^{\text{subframe}, \mu} 1\}$
- In a frame slots are numbered as $n_{s,f}^{\mu} \in \{0,...,N_{slot}^{\text{frame},\mu}-1\}$
- The number of OFDM symbols in a slot is denoted as $N_{\text{symb}}^{\text{slot}}$

Copyright:

• Equals 14

38.211

- Number of slots in sub frame
 - Depends on SCS

	μ	$N_{ m symb}^{ m slot}$	$N_{ m slot}^{ m frame,\mu}$	$N_{ m slot}^{ m subframe,\mu}$
	0	14	10	1
	1	14	20	2
	2	14	40	4
	3	14	80	8
IIT Mai	aras, 2019 4	14	160	16

Number of OFDM symbols per slot, slots per frame, and slots per subframe for normal cyclic prefix.

Time-Frequency Grid in 5G NR

Slots

- Slots are defined such that data contained in it is decodable without any data from other slots.
- Subframes are split into slots and each slot has 14 OFDM symbols.
 - A slot can contain 7 or 14 OFDM symbols for SCS <=60kHz, while a slot always has 14 OFDM symbols for SCS >= 120kHz
- Release 15/16 supports slots with 14 symbols.
- Mini slots are also defined to be used for low latency applications and for forward compatibility.
 - They can start at any time and can be as small as one OFDM symbol.
 - They are the smallest scheduling unit
 - They can have 2,4 or 7 symbols

Ports

- Will describe in detail once we start MIMO in a few classes.
- For now, assume port is equal to an antenna
 - Each port will have its own reference signals

SIB1 →ServingCellConfigCommonSIB →DownlinkConfigCommonSIB →FrequencyinfoDL-SIB/ FrequencyinfoUL-SIB →<mark>SCS-</mark> <mark>SpecificCarrier</mark>

Resource Element and Blocks

- Each numerology has a limit on the number of physical resource blocks it can support. (38.101-1 and 38.101-2) ardband, can be asymmetric
- LTE uses OFDM with a spectral efficiency of 90%, i.e, an LTE band of 20MHz uses only 18MHz and the remaining 2MHz are used as guard bands on either side of the utilized bandwidth.
 - Eg: 100 MHz → No PRB = 273 → used BW = 273*30*12= 98.2 MHz → 98.2% efficient
- NR attempts at 98% spectral efficiency using CP-OFDM.

Transmission bandwidth configuration N_{RB} for FR1 [38.101-1]

SCS (kHz) -	5 MHz	10 MHz	15 MHz	20 MHz	25 MHz	30 MHz	40 MHz	50 MHz	60 MHz	80 MHz	90 MHz	100 MHz
	N _{RB}											
15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	106	133	162	217	245	273
60	N/A	11	18	24	31	38	51	65	79	107	121	135

38.101-1 38.101-2

SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz
	N _{RB}	N _{RB}	N _{RB}	N _{RB}
60	66	132	264	N.A
120	32	66	132	264

Transmission bandwidth configuration N_{RB} for FR2

Source: 38.101-1 and 38.101-2

Primary cell, Secondary cell and Serving cell

- Primary cell (Pcell): The MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
- Secondary cell: For a UE configured with CA, a cell providing additional radio resources on top of Special Cell
- Serving cell: For a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA/ DC the term 'serving cells' is used to denote the set of cells comprising of the Special Cell(s) and all secondary cells.

Coordinate system

- Multiple numerologies are present in NR
- Channels (theoretically) can have different SCS
 - PDSCH, PBCH..
- How do we specify frequency locations of all these channels to the UE?
- We require a common reference point
 - Point A

Point A (Common reference point) and offset to carrier

38.211

**This is for Pcell. For other cells, absoluteFrequencyPointA is used and is specified in terms of ARFCN

Band Width Part (BWP) introduction

- NR supports a wide BW.
 - A UE might not require high BW at all times
 - A UE might not be able to process high bandwidth
- To reduce the power consumption from RF and baseband computation, each UE is assigned a BWP.
 - They have a lower BW, outside which the UE is not required to transmit or receive signals.
- The BWPs assigned to a UE can overlap in frequency and can be of different numerologies.
 - DL/UL
 - UE can have 4 BWP
 - Only one active BWP at a time

38.211

Common Resource Blocks and Physical Resource Blocks ^{38.211}

FFT Size and Sampling

- Example 1: 30 KHz SCS and 100 MHZ BW
 - From the above table we require 273 RB = 273*12 = 3276 subcarriers (used)
 - Therefore, we choose 4096 size FFT/IFFT
 - Sampling time= 1/(4096*30e3) = 16*Tc (recall 64Tc corresponds to 30.72 MSps (LTE))
 - Sampling frequency = 4*30.72 = 122.88 MSps
- Example 2: 30 KHz SCS and 50 MHZ BW
 - From the above table we require 133 RB = 133*12 = 1596 subcarriers (used)
 - Therefore, we choose 2048 size FFT/IFFT
 - Sampling time= 1/(2048*30e3) = 32*Tc
 - Sampling frequency = 2*30.72 = 61.44 MSps
- Example 3: 120 KHz SCS and 400 MHZ BW
 - From the above table we require 264 RB = 264*12 = 3168 subcarriers (used)
 - Therefore, we choose FFT/IFFT Size = 4096
 - Sampling time = 1/(4096*120e3) = 4*Tc
 - Sampling frequency = 16*30.72 = 491.52 MSps

38.211

OFDM Signal/CP duration

For OFDM symbol $l \in \{0, 1, ..., N_{\text{slot}}^{\text{subframe}, \mu} N_{\text{symb}}^{\text{slot}} - 1\}$

$$N_{\rm u}^{\mu} = 2048\kappa \cdot 2^{-\mu}$$

$$N_{\rm CP,l}^{\mu} = \begin{cases} 512\kappa \cdot 2^{-\mu} & \text{extended cyclic prefix} \\ 144\kappa \cdot 2^{-\mu} + 16\kappa & \text{normal cyclic prefix}, \ l = 0 \text{ or } l = 7 \cdot 2^{\mu} \\ 144\kappa \cdot 2^{-\mu} & \text{normal cyclic prefix}, \ l \neq 0 \text{ and } l \neq 7 \cdot 2^{\mu} \end{cases}$$

Cyclic Prefix

$$N_{\rm CP,l}^{\mu} = 2048\kappa \cdot 2^{-\mu}$$
 extended cyclic prefix

$$N_{\rm CP,l}^{\mu} = \begin{cases} 512\kappa \cdot 2^{-\mu} & \text{extended cyclic prefix} \\ 144\kappa \cdot 2^{-\mu} + 16\kappa & \text{normal cyclic prefix}, \ l = 0 \text{ or } l = 7 \cdot 2^{\mu} \\ 144\kappa \cdot 2^{-\mu} & \text{normal cyclic prefix}, \ l \neq 0 \text{ and } l \neq 7 \cdot 2^{\mu} \end{cases}$$

- Cyclic Prefix length (time) = $Tc^*N_{CP,I}^{u}$
- Extra CP length for 0,7 OFDM symbols (for 15KHz)
- Extra CP length for 0,14 OFDM symbols (for 30KHz)
- Extra CP length for 0, 56 OFDM symbols (for 120KHz)

μ	0	1	2	3	4
SCS(khz)	15	30	60	120	240
$T_u(\mu s)$	66.67	33.33	16.67	8.33	4.17
CP(µs)	4.69	2.34	1.17	0.57	0.29

Copyright: IIT Madras, 2019

Effective Duration of the OFDM symbol (with CP)

- Example 1: 30 KHz SCS and 100 MHZ BW
 - Sampling time = 16*Tc (See previous page)
 - Total time (excluding CP) = 16*Tc*4096 = 16*4096*1/(480e3 x 4096) = 33.33 us
 - CP time = 144/2*64*Tc = 2.34us (other than 0 and 14th symbol...)
- Example 2: 30 KHz SCS and 50 MHZ BW
 - Sampling time = 32*Tc
 - Total time (excluding CP) = 32*Tc*2048 = 33.33 us
 - CP time = 144/2*64*Tc = 2.34us (other than 0 and 14th symbol...)
- Example 3: 120 KHz SCS and 400 MHZ BW
 - Sampling time = 4*Tc
 - Total time(excluding CP) = 4*Tc*4096 =8.3us
 - CP time = 144/8*64*Tc = 0.58us (other than 0 and 56th symbol...)

38.211

Summary of Frame Structure

- Sampling rate: 122.88 MSPS (Sampling time 16Tc)
- FFT Size: 4096
- Useful subcarriers: 3276 (Corresponds to 98.280MHz)
- 14 symbols/slot
- Slot Duration = 0.5 ms = (352 + 288*13+4096*14)*16Tc
- 2 slots/subframe

CP Length (samples) =

	<u>0 symbol</u>		1 symbol	2 symbol		14 symbol		15 symbol	
4 352	4096	288			352	4096	288	3	
			0.	.5 ms					
					•				

30 KHz SCS and 100 MHZ BW

Summary of Frame Structure

- Sampling rate: 61.44 MSPS (Sampling time 32Tc)
- FFT Size: 2048
- Useful Subcarriers: 1596 (Corresponds to 47.88 MHz)
- 14 symbols/slot
- Slot Duration = 0.5 ms = (176 + 144*13+2048*14)*32Tc
- 2 slots/subframe

0 symbol 1 symbol 2 symbol	14 symbol 15 symbol
176 2048 <u>1</u> 44	176 2048 144
0.5 ms	

30 KHz SCS and 50 MHZ BW

Sampling

time

38.211

Summary of Frame Structure

- Sampling rate: 491.52 MSPS (Sampling time 4Tc)
- FFT Size: 4096
- Useful Subcarriers: 3168 (corresponds to 380.16 MHz)
- 14 symbols/slot
- Slot Duration = 0.125 ms = (544 + 288*13+4096*14)*4Tc [CHECK THIS. Not exactly 0.125ms]
- 8 slots/subframe

O symbol 1 symbol 2 symbol	56 symbol 57 symbol 6
544 4096 288 4096 288	4096 ₂₈₈
• <u>0.5 ms = 4 slots</u>	

120 KHz SCS and 400 MHZ BW

$s_l^{(p,\mu)}(t)$ $l \in \{0,1,..., \mathcal{M}_{lot} \xrightarrow{\text{flat}} \mathcal{M}_{sym} \xrightarrow{\text{signal generation}} \}$

$$s_{l}^{(p,\mu)}(t) = \sum_{k=0}^{N_{\text{grid}}^{\text{size},\mu}N_{\text{sc}}^{\text{RB}}-1} a_{k,l}^{(p,\mu)} \cdot e^{j2\pi \left(k+k_{0}^{\mu}-N_{\text{grid},x}^{\text{size},\mu}N_{\text{sc}}^{\text{RB}}/2\right)\Delta f\left(t-N_{\text{CP},l}^{\mu}T_{\text{c}}-t_{\text{start},l}^{\mu}\right)}$$

$$k_{0}^{\mu} = \left(N_{\text{grid},x}^{\text{start},\mu} + N_{\text{grid},x}^{\text{size},\mu}/2\right)N_{\text{sc}}^{\text{RB}} - \left(N_{\text{grid},x}^{\text{start},\mu_{0}} + N_{\text{grid},x}^{\text{size},\mu_{0}}/2\right)N_{\text{sc}}^{\text{RB}} 2^{\mu_{0}-\mu}$$
Release 15
$$20$$

$$3\text{GPP TS 38.211 V15.8.0 (2019-12)}$$

 $t_{\text{start},l}^{\mu} \leq t < t_{\text{ptails}/\text{the}}^{\mu} + \left(N_{\text{argest}}^{\mu} + N_{\text{algest}}^{\mu} \right)_{\mu}^{\mu}$

The starting position M_{μ}^{μ} OF Ω M_{μ}^{μ} bo $2\bar{l}^{\mu}$ for subcarrier spacing configuration μ in a subframe is given by

$$N_{\text{CP},l}^{\mu} = \begin{cases} 512 \,\kappa \cdot 2^{-\mu} \\ 144 \,\kappa \cdot$$

Generation (cont....)

- For a given SCS, $K_0^u = 0$
- After a little analysis, the mapping boils down to k → K = mod((k-L/2),N), k=0,1,2,..,L-1
 - k is the sub-carrier index in the resource grid.
 - <u>K</u> is the index for the input to the N point IFFT.
 - L is the resource grid size (in frequency domain, i.e., no of RE) and is always even (since grid size is specified in PRB and is multiple of 12)

#RE/2 is the final DC sub-carrier

```
Effective Mapping (contd...)
```

% Matlab code for illustrating the movement of sub-carries in the final output

N=4096; % FFT Size

```
N_RB =273; % No RB
N_SC = N_RB*12; % No of populated subcarriers
FFT_in = zeros(1, N);
```

- k → K= mod((k-L/2),N)

index_RE= mod((1:N_SC)-N_SC/2, N)+1; % +1 since Matlab indexing starts from 1

X= 1:1:N_SC; % Dummy data in the subcarriers. We can identify the sub-carrier by the data it carries

FFT_in(index_RE)= X; % Input to the IFFT

out_frame_time = sqrt(N)*ifft(FFT_in); % IFFT

% Plotting the frequency domain by FFT and FFT shift.

stem((-N/2):1:(N/2-1),abs(1/sqrt(N)*fftshift(fft(out_frame_time))))

DC subcarrier in 5GNR

- LTE had a BW of 20 MHZ and every UE supported 20 MHz
- In 5GNR, the BW can be as large as 400 MHz and not all UE can support it
- In 5G NR the UE need not support the entire Carrier BW. In fact it can occupy any region the supported carrier
- In LTE DC sub carrier was nulled (common)
- In 5G NR the DC subcarrier has information (no common DC)

Mainly for LTE alignment (to reduce interference)

bwp-ld

38.211

Transmission Bandwidth and guard bands

SCS	5	10	15	20	25	30	40	50	60 MHz	70	80	90	100
(kHz)	MHz		MHz	MHz	MHz	MHz							
	Nrb	Nrb	Nrb	NRB	Nrb								
15	25	52	79	106	133	160	216	270	N/A	N/A	N/A	N/A	N/A
30	11	24	38	51	65	78	106	133	162	189	217	245	273
60	N/A	11	18	24	31	38	51	65	79	93	107	121	135

Table 5.3.2-1: Transmission bandwidth configuration N_{RB} for FR1

	SCS	5	10	15	20	25	30	40	50	60 MHz	70	80	90	100
0	(K1H55z)	M2H2	M245z	MBD2	MHHCz	M 562	60HM2Hz	MHT20	MH&20	90	M1H2:0	MHz	MHz	MHz
Hz	MHz	NNHaz	NA	NATE:	. Mikiz	NH Z	NRB	NMHZ	NMHz	NAHZ	. NA Hz	NRB	Nrb	NRB
RB	NRB	Ŋу _в в	M RB	ARB (108B		166 ^B	2108B	2708	NVAB.	ПZ NAR ^B	N/A	N/A	N/A
52	39	196	<u>⊅</u> ≩3	380	316	650	-78/ANR	1016A	158A	1024 R	186A	217	245	273
24	68	NĀÁ	ſб	178 00	j _ 26	3333	362	51/89	265 17	- 2 945 ¹ //	· <u>9</u> 973	107	121	135
1	18	24	31	3812	51	365	79 66	93	13907	12f ⁶⁴	135			

Table 5.3.2-2: Transmission bandwidth configuration N_{RB} for FR2

		SCS (kHz)	50 MHz	100 MHz	200 MHz	400 MHz
SCS (kHz)	50 MHz	100`MHź	200 MHz	400 MHz	NRB	NPR
	N _{RB}	A RB	ARB	1NPB	264	N/A
60	66	1382	364	<u>A</u>	132	264
120	32	66	132	264		_0.

Table 5.3.3-1: Minimum guardband (kHz) (FR1)

Guardband, can be asymmetric

The starting point of the transmission bandwidth configuration on the common resource block grid for a given channel bandwidth is indicated by an offset to "Reference point A" in the unit of the numerology.

					~ ~		-																			
	Releas	e 15	10	15	³² 20	25	30 3	BPPOTS	38.304 V	15. <u>60</u> 82	0FF 87-8755) 3	8.1 <u>84</u> V1	15.7 ₉ g (20	19 ₁ 09)												
	(kHz)	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	Myes	5	10	15	20	25	30	40	50	60 MHz	70	80	90
	15	242.5	312.5	382.5	452.5	522.5	592.5	552.5	692.5	N/A	N/A	N/A	N/A	N(KHz)	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz		MHz	MHz	MHz
5	64 5	58055	676855	691455	89055	718845	9825	990655	1 9 25	82855	986455	925	885	645	N _{RB}	Nrb	Nrb	Nrb	Nrb	Nrb	Nrb	Nrb	Nrb	Nrb	NRB	Nrb
0	69 0	N13480	11031100	929 0	11363100	13370	1259600	11641990	11547500	11548100	11439700	1450	1410	137105	25 (โนซิrd	Ban	d1£6((Chaan	ne¢º E	3/0 /16_	N270*1	2₩SC	SNAS	C\$₩/2	N/A
												_		30	11	24	-38	51	65	78	106	133	162	189	215	245
														60	N/A	11	18	24	31	38	51	65	79	93	107	121
	SCS	able ₅ 5	5.3.3-2 ₀ N	/linimyr	n gua _{lf} d	band ₂ (k	H <u>z) (</u> हुर्ह	2) ₄₀	50	60	70	80	90	100												
10	(k fi 15)	MR	М 🛙 🛛 М 🖓 5	MBO	M149	MHSÐ	MIGO	M FI 9	MIS	MAÐ	M1-020	MHz	MHz	MHz												
MHz	SKAS	z(kHz) MH	z 503MHz	z 38000		22000例和	5400		FOO WANNE	7 4,994	VIHZ NMA	Z N/A	N/A	N/A												
12.	5 3826	30 452	1.251202.	5 592	45 0 552	.5 1 429639 2.	5 13204	1549, N/A	4 493 0 1//	A NMA	A N/A	<u>۱</u>														
	1	20	1900	2	42 0	1499000	294 294	260	4900	986	50						SCS	S (kHz)	50 MH	lz 10	0 MHz	200 MH) MHz		
																		- ()	N _{RB}		N _{RB}	N _{RB}	1	N _{RB}		
												Copyr	right: III	Madra	s. 2019			60 D	IIE 🕷	char	<u> 1</u> 162⊖ Ir	ast26#	١	N/A		
												00071	.0		, _010			120	32	citat	66	132	2	264	38.1	04

3/2PP 0TS 38.104 V15.70 82011 8-105 38.104 V15.70 (2019,09)

														15	Yes	Yes	Yes	Yes					
		Table \$	5.3.5-1:	BS ch	annel k	bandwi	<i>dths</i> an	d SCS	per op	erating	band i	in FR ₁	83	30		Yes	Yes	Yes					
				N	IR band		BS cha	nnel ba	ndwidth					60	7			\sim		1.1	1		
NR	SCS	5	10	15	20	25	30	40	50	60	70	80	90	1.00	Voc	Voc	Voc	ねる	nne	n le	and	NN/I	F
Band	kHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHZ	165	165	165	ၣ႞ႜၯႄႜၯ			and		L
	15	Yes	Yes	Yes	Yes	-						n	84	30	_	Yes	Yes	Yes					
n1	30		Yes	Yes	Yes									60	_	Yes	Yes	Yes					
	60	Vos	Yes	Yes	Yes									15	Yes	Yes	Yes	Yes		Ye	8		
n?	30	Tes	Ves	Ves	Ves				-					20		Vee	Vee	Vee		Ye.	-		
112	60		Yes	Yes	Yes								86	- 30	-	Yes	res	res		re	S		
	15	Yes	Yes	Yes	Yes	Yes	Yes							60	-	Yes	Yes	Yes		Ye	S		
n3	30		Yes	Yes	Yes	Yes	Yes								-								
	60		Yes	Yes	Yes	Yes	Yes																
	15	Yes	Yes	Yes	Yes			1	1			1			1				_	_	_		
n5	30		Yes	Yes	Yes	1		1	1			1			Table 5	5.3.5-2	BS ch	annel ba	ndwidths	s and SC	S per op	erating ban	d
	60																					-	
	15	Yes	Yes	Yes	Yes												N	R band /	SCS / BS	channel l	bandwidth		
n7	30		Yes	Yes	Yes		25				- TO 00	104.14							50	400	200	400	
kelease 1	° 60		Yes	Yes	Yes		30			3GP	15 38	.104 V1	5.7.U (2U	119-09)				565	50	100	200	400	
	15	Yes	Yes	Yes	Yes												Band	kHz	MHZ	MHZ	MHz	MHZ	
n8	30		Yes	Yes	Yes	N.											0.5.7	60	Yes	Yes	Yes		
	680	Vee	Yes	Yes	Yes	Yes						-			_	n257	n257	120	Yes	Yes	Yes	Yes	
n74h	ମ୍ବର ନ	14688	Mess Voc	14685	Yes										-			120	100 Vee	Yee	100	100	
11/12	250		17685	NGBS	res	-			-			-			-		n258	60	Yes	Yes	Yes		
	1455	Vee	V ADO	¥ po	Vee										-		11200	120	Yes	Yes	Yes	Yes	
m-740	30	פטיוי	Wess	Kee	Kes										-			60	Yes	Yes	Yes		
191210	- 2 20 660		Yes	Yes	Yes										-		n260	00	105	105	105		
	1155	Yes	Yees	Yees	Yees										-			120	Yes	Yes	res	res	
m7255	300	100	Yess	Yees	Yees										-			60	Yes	Yes	Yes		
	600		Yees	Yees	Yees												n261	120	Yes	Yes	Yes	Yes	
	1155	Yees	Yes	Yes	Yes			-					-	-				120	105	103	105	100	
n28	300		Yes	Yes	Yes																		
	660																						
	1155	Yes	Yees	Yees	Yees		Yes	Yes	Yes														
m7374	390		Yees	Yees	Yees		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes									
	660		Yees	Yees	Yees		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes									
-	1155	Yes	Yrees	Yees	Yees		Yes	Yes	Yes														
nn7388	30		¥46685	1468s	YYGGSS		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes									
	660		YYGESS	¥468s	14688		Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes									
m7399	15	Yes	Yes	Yes	Yes	Yes	Yes	14666s	res	Vee		Vaa		Vaa									
	- ୪୫୦ ଜନ		Yes	Yes	Yes	Yes	Yes	114686 114686	res	res		res		res									
	14Fe	X00	res Vee	T ES	Tes Vee	Yes	T ES	NG85	Vee	165		165	<u> </u>	res									
nSta	୍ୟାର ସହ	GGDI	Wees	NGOS NGOS	11988 Wasa	Yee	11988 Keen	r es	Yes	Voo		Vaa	<u> </u>	Vac									
un un u	-040 640		1988 Wase	1988 ¥/292	Wee-	10880 WASS	Yee	Vee	Vec	Vee		Vec		Vec									
	15	+	Yee	Yee		11000	000	Yes	Yes	103	ł	165	Сор	vright:	IIT Madra	as, 2019)						
n41	300		YGASS	Yees	Yees			Yes	Yes	Yes	Yes	Yes	Yes	Yes		,							
	ራሳ		Vaa	Vaa	Vaa			Voo	Vee	Vee	Voc	Vec	Voc	Voc									

8.104

Global Raster

- Global frequency raster defines a set of RF reference frequencies : F_{ref}
 - Used to locate RF channels.
 - Defined from 0...100GHz
 - Granularity: Δf_{Global}
- RF reference frequencies are designated by an NR Absolute Radio Frequency Channel Number (NR-ARFCN) Table 5.4.2.1-1: NR-ARFCN parameters for the global frequency raster
 - Range [0...3279165]

 $F_{REF} = F_{REF-Offs} + \Delta F_{Global} (N_{REF} - N_{REF-Offs})$

Range of frequencies(MHz)	ΔF _{Global} (kHz)	F _{REF-Offs} (MHz)	NREF-Offs	Range of NREF		
0 - 3000	5	0	0	0 – 599999		
3000 – 24250	15	3000	600000	600000 - 2016666		
24250 – 100000	60	24250.08	2016667	2016667 – 3279165		

- The RF reference frequency for an RF channel maps to a resource element on the carrier (kHz) FREF-Offs (MHz) NREF-Offs Range of NREF
- For each operating band a separate Δf_{Raster} % Channel raster) is defined in terms of integral multiples of Δf_{Global016667}
 - Next slide

Channel raster

- For each band, the Δf_{Raster} is used to increment
- For frequency bands with two ΔF_{Raster} in FR1, the higher ΔF_{Raster} applies to channels using only the SCS that is equal to or larger than the higher ΔF_{Raster} and SSB SCS is equal to the higher ΔF_{Raster} .

For example, in the n78 Khz and using 30 KHz SCS, we should use 30 KHz for the raster.

For 3.5 GHz (Center frequency), the closest Raster point is ??

NR	ΔF _{Raster}	Uplink	Downlink				
operating	(kHz)	range of NREF	range of NREF				
band		(First – <step size=""> – Last)</step>	(First – <step size=""> – Last)</step>				
n1	100	384000 - <20> - 396000	422000 - <20> - 434000				
n2	100	370000 - <20> - 382000	386000 - <20> - 398000				
n3	100	342000 - <20> - 357000	361000 - <20> - 376000				
n5	100	164800 - <20> - 169800	173800 - <20> - 178800				
n7	100	500000 - <20> - 514000	524000 - <20> - 538000				
n8	100	176000 - <20> - 183000	185000 - <20> - 192000				
n12	100	139800 - <20> - 143200	145800 - <20> - 149200				
n20	100	166400 - <20> - 172400	158200 - <20> - 164200				
n25	100	370000 - <20> - 383000	386000 - <20> - 399000				
n28	100	140600 - <20> - 149600	151600 - <20> - 160600				
n34	100	402000 - <20> - 405000	402000 - <20> - 405000				
n38	100	514000 - <20> - 524000	514000 - <20> - 524000				
n39	100	376000 - <20> - 384000	376000 - <20> - 384000				
n40	100	460000 - <20> - 480000	460000 - <20> - 480000				
- 11	15	499200 - <3> - 537999	499200 - <3> - 537999				
114 1	30	499200 - <6> - 537996	499200 - <6> - 537996				
n50	100	286400 - <20> - 303400	286400 - <20> - 303400				
n51	100	285400 - <20> - 286400	285400 - <20> - 286400				
n66	100	342000 - <20> - 356000	422000 - <20> - 440000				
n70	100	339000 - <20> - 342000	399000 - <20> - 404000				
n71	100	132600 - <20> - 139600	123400 - <20> - 130400				
n74	100	285400 - <20> - 294000	295000 - <20> - 303600				
n75	100	N/A	286400 - <20> - 303400				
n76	100	N/A	285400 - <20> - 286400				
n77	15	620000 - <1> - 680000	620000 - <1> - 680000				
1177	30	620000 - <2> - 680000	620000 - <2> - 680000				
n79	15	620000 - <1> - 653333	620000 - <1> - 653333				
11/0	30	620000 - <2> - 653332	620000 - <2> - 653332				
n70	15	693334 - <1> - 733333	693334 - <1> - 733333				
1179	30	693334 - <2> - 733332	693334 - <2> - 733332				
n80	100	342000 - <20> - 357000	N/A				
n81	100	176000 - <20> - 183000	N/A				
n82	100	166400 - <20> - 172400	N/A				
n83	100	140600 - <20> -149600	N/A				
n84	100	384000 - <20> - 396000	N/A				
n86	100	342000 - <20 > -356000	N/A				

Synchronization Raster

- For faster synchronization
- More details when we look at SSB

 Table 5.4.3.1-1: GSCN parameters for the global frequency raster

Range of frequencies (MHz)	SS block frequency position SS _{REF}	GSCN	Range of GSCN						
0 – 3000	N * 1200 kHz + M * 50 kHz, N = 1:2499, M ε {1,3,5} (Note)	3N + (M-3)/2	2 – 7498						
3000 - 24250	3000 MHz + N * 1.44 MHz, N = 0:14756	7499 + N	7499 – 22255						
24250 – 100000	24250.08 MHz + N * 17.28 MHz, N = 0:4383	22256 + N	22256 – 26639						
NOTE: The default value for <i>operating bands</i> with SCS spaced channel raster is M=3.									

Resource element index k

120

Example (n78 band 3.3-3.8GHz), 100 MHz BW, 30 KHz SCS. Center Freq around 3.5

- [38.104, Table 5.3.2-1] N_{RB} = 273
- From 5.4.2.3.1, 38.104
 - The raster is 30KHz or N_{ref} step size is 2
 - the closest raster point is 633334 (NR-ARFCN)
 - Corresponds to 3500.01 MHz.
- Global Raster granularity = 15 KHZ
- 273RB = 273*12 RE * 30 KHz

- 6th Sub carrier.
- 135 RB correspond to
 - 135*12*2 = 3240 ARFCN
- 6 RE correspond to 12 ARFCN

